Shear-induced crystallization of an amorphous system.

نویسندگان

  • Anatolii V Mokshin
  • Jean-Louis Barrat
چکیده

The influence of a stationary shear flow on the crystallization in a glassy system is studied by means of molecular dynamics simulations and subsequent cluster analysis. The results reveal two opposite effects of the shear flow on the processes of topological ordering in the system. Shear promotes the formation of separated crystallites and suppresses the appearance of the large clusters. The shear-induced ordering proceeds in two stages, where the first stage is related mainly to the growth of crystallites and the second stage is due to an adjustment of the created clusters and a progressive alignment of their lattice directions. The influence of strain and shear rate on the crystallization is also investigated. In particular, we find two plausible phenomenological relations between the shear rate and the characteristic time scale needed for ordering of the amorphous system under shear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and Morphology of Flow Induced Polymer Crystallization in 3D Shear Flow Investigated by Monte Carlo Simulation

To explore the kinetics and morphology of flow induced crystallization of polymers, a nucleation-growth evolution model for spherulites and shish-kebabs is built based on Schneider rate model and Eder model. The model considers that the spherulites are thermally induced, growing like spheres, while the shish-kebabs are flow induced, growing like cylinders, with the first normal stress differenc...

متن کامل

Localized crystallization in shear bands of a metallic glass

Stress-induced viscous flow is the characteristic of atomic movements during plastic deformation of metallic glasses in the absence of substantial temperature increase, which suggests that stress state plays an important role in mechanically induced crystallization in a metallic glass. However, it is poorly understood. Here, we report on the stress-induced localized crystallization in individua...

متن کامل

Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars

Metallic glasses are lucrative engineering materials owing to their superior mechanical properties such as high strength and great elastic strain. However, the Achilles' heel of metallic amorphous materials - low plasticity caused by instantaneous catastrophic shear banding, significantly undercut their structural applications. Here, the nanolayered crystalline Cu/amorphous Cu-Zr micropillars w...

متن کامل

Deformation-driven catalysis of nanocrystallization in amorphous Al alloys

Nanocrystals develop in amorphous alloys usually during annealing treatments with growth- or nucleation-controlled mechanisms. An alternative processing route is intense deformation and nanocrystals have been shown to develop in shear bands during the deformation process. Some controversy surrounded the idea of adiabatic heating in shear bands during their genesis, but specific experiments have...

متن کامل

A DETAILED STUDY TOWARD THE NANO -CRYSTALLIZATION OF α – Fe IN Fe55-X Cr18Mo7B16C4 BULK AMORPHOUS ALLOY

Crystallization of α – Fe phase during annealing process of Fe55Cr18Mo7B16C4 bulk amorphous alloy has been evaluated by X- ray diffraction, differential scanning calorimetric tests and TEM observations in this research. In effect, crystallization mechanism and activation energy of crystallization were evaluated using DSC tests in four different heating rates (10, 20, 30, 40 K/min). A two -st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 77 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2008